Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Discrete Dynamics in Nature and Society ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2053436

ABSTRACT

The world economy, since the outbreak of the coronavirus epidemic, has undergone profound changes. Especially since the coronavirus became the norm, how to achieve rapid economic revitalization has become a problem that countries have to face. In order to analyze how the government should promote the enterprises’ economic revitalization and effectively control pollution under the normalized epidemic situation, this paper analyzes the economic revitalization and pollution control problems faced by enterprises under the normalized epidemic situation by using the evolutionary game method. Through the analysis of the evolutionary game model, we draw the following conclusions: (1) Discovered by comparing two different incentives mechanism and penalties mechanism, the dynamic incentives mechanism, and penalties mechanism has a better effect on the process of enterprises’ economic revitalization, and it also can reduce the discharge of enterprises’ pollutants. (2) In terms of discharge reduction effect, penalties have a better effect than incentives. Compared with incentives, in the process of the economic revitalization of enterprises, in order to reduce pollution discharge, the government can adopt dynamic penalties strategies. This paper analyzes what the government should do when enterprises face the problems of economic revitalization and pollution control. This study can not only provide suggestions for the government in the process of governance but also provide countermeasures for the economic revitalization of enterprises.

2.
Sci Total Environ ; 839: 156164, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1852052

ABSTRACT

The outbreak and spread of Corona Virus Disease 2019 (COVID-19) has led to a significant increase in the consumption of sodium hypochlorite (NaOCl) disinfectants. NaOCl hydrolyzes to produce hypochlorous acid (HOCl) to kill viruses, which is a relatively efficient chlorine-based disinfectant commonly used in public disinfection. While people enjoy the convenience of NaOCl disinfection, excessive and indiscriminate use of it will affect the water environment and threaten human health. Importantly, HOCl is an indispensable reactive oxygen species (ROS) in human body. Whether its concentration is normal or not is closely related to human health. Excessive production of HOCl in the body contributes to some inflammatory diseases and even cancer. Also, we noticed that the concentration of ROS in cancer cells is about 10 times higher than that in normal cells. Herein, we developed a HOCl-activatable biotinylated dual-function fluorescent probe BTH. For this probe, we introduced biotin on the naphthalimide fluorophore, which increased the water solubility and enabled the probe to aggregate in cancer cells by targeting specific receptor overexpressed on the surface of cancer cell membrane. After reacting to HOCl, the p-aminophenylether moiety of this probe was oxidatively removed and the fluorescence of the probe was recovered. As expected, in the PBS solution with pH of 7.4, BTH could give full play to the performance of detecting HOCl, and it has made achievements in detecting the concentration of HOCl in actual water samples. Besides that, BTH had effectively distinguished between cancer cells and normal cells through a dual-function discrimination strategy, which used biotin to enrich the probe in cancer cells and reacted with overexpressed HOCl in cancer cells. Importantly, this dual-function discrimination strategy could obtain the precision detection of cancer cells, thereby offering assistance for improving the accuracy of early cancer diagnosis.


Subject(s)
COVID-19 , Disinfectants , Biotin , Fluorescent Dyes , Humans , Hypochlorous Acid/metabolism , Water
3.
ACS Appl Nano Mater ; 4(12): 13826-13837, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1586051

ABSTRACT

The SARS-CoV-2 global pandemic created an unprecedented need for rapid, sensitive, and inexpensive point-of-care (POC) diagnostic tests to treat and control the disease. Many POC SARS-CoV-2 lateral flow immunoassays (LFAs) have been developed and/or commercialized, but with only limited sensitivity (µM-fM). We created an advanced LFA based on gold nanospheres (GNSs) with comprehensive assay redesign for enhanced specific binding and thermal contrast amplification (TCA) on GNSs for signal amplification, which enabled fM-aM detection sensitivity for SARS-CoV-2 spike receptor-binding domain (RBD) proteins within 30 min. The advanced LFA can visually detect RBD proteins down to 3.6 and 28.6 aM in buffer and human nasopharyngeal wash, respectively. This is the first reported LFA achieving sensitivity comparable to that of the PCR (aM-zM) by visual reading, which was much more sensitive than traditional LFAs. We also developed a fast (<1 min) TCA reading algorithm, with results showing that this TCA could distinguish 26-32% visual false negatives for clinical commercial LFAs. When our advanced LFAs were applied with this TCA, the sensitivities were further improved by eightfold to 0.45 aM (in buffer) and 3.6 aM (in the human nasopharyngeal wash) with a semiquantitative readout. Our proposed advanced LFA with a TCA diagnostic platform can help control the current SARS-CoV-2 pandemic. Furthermore, the simplicity and speed with which this assay was assembled may also facilitate preparedness for future pandemics.

4.
Diagnostics (Basel) ; 11(3)2021 Mar 07.
Article in English | MEDLINE | ID: covidwho-1143463

ABSTRACT

Influenza poses a serious health threat and creates an economic burden for people around the world. The accurate diagnosis of influenza is critical to the timely clinical treatment of patients and the control of outbreaks to protect public health. Commercially available rapid influenza diagnostic tests (RIDTs) that are operated by visual readout are widely used in clinics to screen influenza infections, but RIDTs suffer from imperfect analytical sensitivity, especially when the virus concentration in the sample is low. Fortunately, the sensitivity can be simply improved through an add-on signal amplification step, i.e., thermal contrast amplification (TCA). To demonstrate the advantage of TCA for influenza diagnosis, we conducted a prospective cohort study on 345 clinical specimens collected for influenza A and B testing during the 2017-2018 influenza season. All samples were tested using the Quidel QuickVue Influenza A + B test, followed by a TCA readout, and then confirmatory polymerase chain reaction testing. Through the TCA detecting sub-visual weak positives, TCA reading improved the overall influenza sensitivity by 53% for influenza A and 33% for influenza B over the visual RIDTs readings. Even though the specificity was compromised slightly by the TCA protocol (relative decrease of 0.09% for influenza A and 0.01% for influenza B), the overall performance was still better than that achieved by visual readout based on comparison of their plots in receiver operating characteristic space and F1 scores (relative increase of 14.5% for influenza A and 12.5% for influenza B). Performing a TCA readout on wet RIDTs also improved the overall TCA performance (relative increase in F1 score of 48%). Overall, the TCA method is a simple and promising way to improve the diagnostic performance of commercial RIDTs for infectious diseases, especially in the case of specimens with low target analytes.

5.
Orphanet Journal of Rare Diseases ; 15(1):181-181, 2020.
Article in English | MEDLINE | ID: covidwho-662397

ABSTRACT

BACKGROUND: Autoimmune necrotizing myopathy with anti-signal recognition particle antibodies (ANM-SRP) is regarded as refractory myositis, whereby some patients respond poorly to conventional immunosuppression and require B cell depletion treatment. This study aimed to evaluate factors associated with refractory ANM-SRP. RESULTS: Clinical and pathological data from 48 patients with ANM-SRP were collected. We followed up clinical symptoms and image changes over 12 months. Univariate and multivariate analyses were undertaken to determine the associations between variables of interest and poor response to therapy. Refractory ANM-SRP appeared in 32.5% of patients who showed no or minimal improvement after 12 months of steroid therapy. The clinical risk factors for refractory patients were being male (OR, 19.57;P <0.001), severe muscle weakness (OR, 7.51;P <0.001) and concurrent interstitial lung disease (OR, 39.70;P <0.001). The imaging refractory-related factor was the fatty infiltration rate of thigh muscles over 3 months (P = 0.022) and the pathological factor associated with refractory ANM-SRP was the high expression of B cell activating factor receptor (BAFF-R) in muscle (P = 0.036). CONCLUSION: Being male, severe muscle weakness, concurrent interstitial lung disease, quick development of muscle fatty infiltration and more BAFF-R and B lymphocyte infiltration in muscle indicate a poor response to immunosuppressive therapy in patients with ANM-SRP.

SELECTION OF CITATIONS
SEARCH DETAIL